High frequency data High frequency modeling and analysis

MASEF

Slides Part II Tick by tick financial time series

Emmanuel Bacry DR CNRS, CEREMADE, Université Paris-Dauphine, PSL, CSO, Health Data Hub bacry@ceremade.dauphine.fr

- Non uniformly sampled (1d) time-series
- Which "tick" to choose?
 - Last traded price
 - Mid price
 - Best bid/ask prices
 - . . .

It is an arbitrary projection of a complex dynamics.

ACD Autoregressive Conditional Duration model (Engle, Russel 1997)

- Forex rate Mark/Dollar : 51 days May-August 1993
- best bid/ask prices 303408 observations
- Average of 15s between each quote
- Strong intraday seasonality

ACD (Engle, Russel 1997) : intraday seasonality

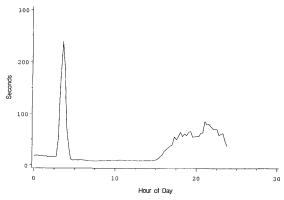


Fig. 1. Expected quote duration conditioned on time of day.

Robert F. Engle, Jeffrey R. Russell Journal of Empirical Finance 4 (1997) 187-212.

 \Longrightarrow Simple "Deseasonalizing" by dividing the duration by the average duration

E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021 Part III- Tick by tick financial time series

ACD (Engle, Russel 1997) : Autocorrelation function

	acf	
lag 1	0.083	
lag 2	0.076	
lag 3	0.064	
lag 4	0.053	
lag 5	0.059	
lag 6	0.048	
lag 7	0.050	
lag 8	0.038	
lag 9	0.048	
lag 10	0.040	
lag 11	0.049	
lag 12	0.043	
lag 13	0.039	
lag 14	0.040	
lag 15	0.042	

Robert F. Engle, Jeffrey R. Russell Journal of Empirical Finance 4 (1997) 187-212.

ACD (Engle, Russel 1997) : The model

 X_n : duration between two ticks

$$X_n = m_n \epsilon_n$$

where

- $\epsilon_n \geq 0$, iid
- $E(\epsilon_n) = 1$
- m_n independent from ϵ_n
- $m_n \mathcal{F}_{n-1}$ measurable

$$m_n = E(X_n | \mathcal{F}_{n-1}).$$

ACD (Engle, Russel 1997) : The model

$$m_n = E(X_n | \mathcal{F}_{n-1}).$$
$$m_n = \omega + \alpha X_{n-1} + \beta m_{n-1}$$

Thus

$$X_{n} = m_{n} + X_{n} - m_{n} = \omega + \alpha X_{n-1} + \beta m_{n-1} + X_{n} - m_{n}$$

= $\omega + (\alpha + \beta) X_{n-1} - \beta (X_{n-1} - m_{n-1}) + X_{n} - m_{n}$

Asymptotically stationary if $\alpha+\beta<1$

$$\implies E(X_n) = \frac{\omega}{1 - (\alpha + \beta)} = M$$

$$\Longrightarrow X_n - M = (\alpha + \beta)(X_{n-1} - M) + X_n - m_n - \beta(X_{n-1} - m_{n-1})$$

$$X_{n} - M = (\alpha + \beta)(X_{n-1} - M) + X_{n} - m_{n} - \beta(X_{n-1} - m_{n-1})$$

We set

$$Y[n] = (\alpha + \beta)Y_{n-1} + W_n - \beta W_{n-1}$$

Many many extensions ...

- ACM-ACD model (Russel, Engle 2004)
- ACD(m,q) model
- EACD model
- log-ACD
- Burr-ACD
- GACD
- GARCH-ACD
- ...

(Co)Variance estimation and microstructure

Key issue : (historical) variance/covariance estimation

- diffusion processes : better estimates at fine scales
 ⇒ one should use high frequency data (tick data)
- However : microstructure
 - Price processes are point processes
 - Prices "live" on a tick grid
 - Strong mean reversion at very small scales
 - Some references

In economics : Roll (1984) [Roll model], Glosten (1987), Glosten et Harris (1988), Harris (1990) In statistics and econometrics : Gloter and Jacod (2001), Ait-Sahalia, Myland et Zhang (2002-2006)

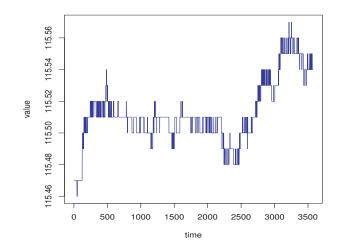


FIGURE: Bund 10Y, 6 Feb 2007, 09 :00-10 :00 (UTC) 1 data per second.

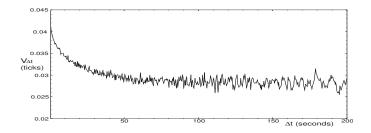
1d Stylized fact of microstructure : Signature plot

Variance estimators increase when going to high frequency

- X(t) : price (last traded price or mid-price or ...)
- Daily "variance" estimator :

$$V_{\Delta t} = \sum_{n=0}^{1 day/\Delta t} |X((n+1)\Delta t) - X(n\Delta t)|^2$$

• Bund 10Y 21 days, 9-11 AM - Last Traded Ask - 7000 points



- Point processes introduced by A.G.Hawkes in the 70's
- Flexible and versatile tool to investigate mutual and/or self interaction of dynamic flows
- Very sucessful in seismic (> 1980)
- Rising popularity in finance (> 2007)
 → Modeling high frequency time-series events (price changes, cancel/limit/market orders, ...)
- Rising popularity in machine learning (network, ...)

It's time to talk about Hawkes processes

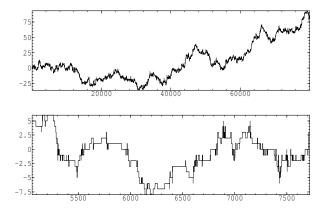
A 2d Hawkes model for microstructure

E.B., S.Delattre, M.Hoffmann, J.F.Muzy (Quant Finance 2012 + SPA 2013)

General form of the MEP price model

•
$$X_t = N_t^+ - N_t^-$$
 with
 $N_t = \begin{pmatrix} N_t^+ \\ N_t^- \end{pmatrix}, \ \lambda_t^N = \begin{pmatrix} \lambda_t^{N^+} \\ \lambda_t^{N^-} \end{pmatrix}, \ u = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$
 $\Phi^N(t) = \begin{pmatrix} \varphi^{N,s}(t) & \varphi^{N,c}(t) \\ \varphi^{N,c}(t) & \varphi^{N,s}(t) \end{pmatrix}$
 $\lambda_t^N = \mu . u + \Phi^N \star dN_t.$
• Stability $\iff \rho(||\Phi^N||) < 1$, where we defined
 $||\Phi^N(t)|| = \begin{pmatrix} ||\varphi^{N,s}(t)||_1 & ||\varphi^{N,c}(t)||_1 \\ ||\varphi^{N,s}(t)||_1 & ||\varphi^{N,s}(t)||_1 \end{pmatrix}$

Simulation over 10 hours + Zoom on 1h

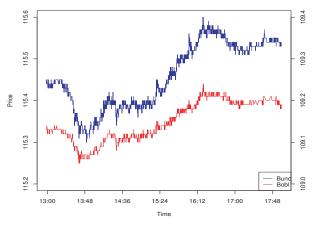


Microstructure "Stylized facts"

- \longrightarrow Point processes (Hawkes) diffusing at large scales
- \longrightarrow Prices "live" on a *tick grid*
- \longrightarrow Strong mean reversion at very small scales

E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021 Part III- Tick by tick financial time series

What about modeling two correlated assets?

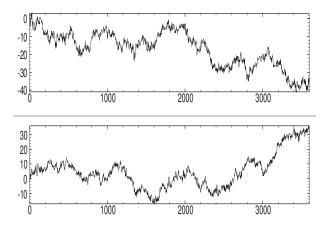


Bund and Bobl

FIGURE: Bund 10Y / Bobl 5Y

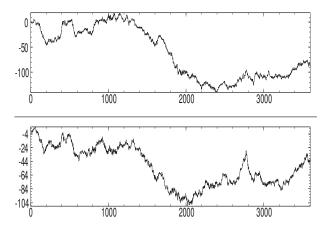
A 4d Hawkes process for modeling 2 correlated assets

Diffusive correlation $C_{\Delta t=+\infty} = 10\%$



A 4d Hawkes process for modeling 2 correlated assets

Asymptotic correlation $C_{\Delta t=+\infty} = 60\%$



The mean signature plot in the dimension 1 model

• the signature plot :

$$V_{\Delta t} = \sum_{n=0}^{1 day/\Delta t} |X((n+1)\Delta t) - X(n\Delta t)|^2$$

• the mean signature plot :

$$E(V_{\Delta t}) = \frac{1}{\Delta t} E(|X((n+1)\Delta t) - X(n\Delta t)|^2) = \frac{1}{\Delta t} E(X(\Delta t)^2)$$

with initial condition : X(0) = 0

• closed-form formula for the mean signature plot when $\Phi(x) = \alpha e^{-\beta x}$ (through the explicit computation of the Bartlett spectrum (1963)).

Closed form for the mean signature plot

•
$$\lambda^{\pm}(t) := \frac{\mu}{2} + \int_{[0,t)} \phi(t-s) dN_s^{\mp}$$

•
$$\phi(t) = \alpha e^{-\beta t} \mathbb{1}_{\mathbb{R}^+}(t), \quad ||\phi||_1 = \frac{\alpha}{\beta} < 1.$$

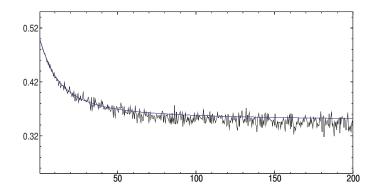
$$E(V_{\Delta t}) = \Lambda \left[\nu^2 + (1 - \nu^2) \frac{1 - e^{-\gamma \Delta t}}{\gamma \Delta t}
ight],$$

where

•
$$\Lambda = rac{\mu}{1-||\phi||_1}$$
 , $u = rac{1}{1+||\phi||_1}$ and $\gamma = lpha + eta$

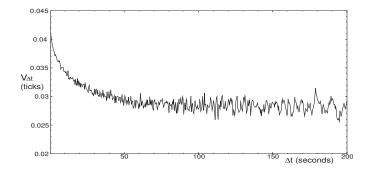
Mean signature plot on simulated data

Signature plot on 11 hours simulated data



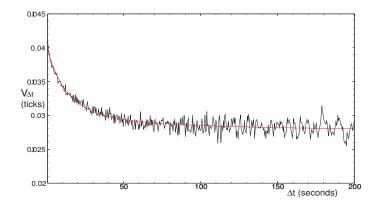
Mean signature plot on real data

Bund 10Y : 21 days, 9-11 AM - Last Traded Ask (7000 points)



Mean signature plot on real data - Mean square regression

 Bund 10Y : 21 days, 9-11 AM - Last Traded Ask Mean square regression fit



\implies Very good modelization of the 1d microstructure noise.

The mean Epps effect the dimension 2 model

• Daily "correlation" estimator : $C_{\Delta t} = \tilde{C}_{\Delta t}/\tilde{C}_0$

$$\tilde{C}_{\Delta t} = \sum_{n=0}^{1 day/\Delta t} (X((n+1)\Delta t) - X(n\Delta t))(Y((n+1)\Delta t) - Y(n\Delta t))$$

the mean Epps effect

$$MEpps_{\Delta t} = \frac{E(X(\Delta t)Y(\Delta t))}{\sqrt{E(X(\Delta t)^2)E(Y(\Delta t)^2)}}$$
(1)

with initial condition : X(0) = 0

• closed-form formula for the mean Epps effect when $\Phi_{X,X}$, $\Phi_{Y,Y}$, $\Phi_{X,Y}$, $\Phi_{Y,X}$ are of the form $\alpha e^{-\beta x}$ \rightarrow through the explicit computation of the Bartlett spectrum (1963).

Closed form for the mean Epps effect in dimension 2

Closed form formula for the mean Epps effect in dimension 2

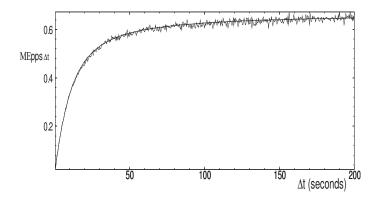
- General case \rightarrow too many parameters
- Reducing the parameters
 - μ_X, μ_Y
 - $\alpha_{same} = \alpha_{X,X} = \alpha_{X,Y}$,
 - $\alpha_{cross} = \alpha_{X,Y} = \alpha_{Y,X}$,

•
$$\beta = \beta_{X,Y} = \beta_{Y,X} = \beta_{X,X} = \beta_{Y,Y}$$

 \longrightarrow Sorry : The formula is at least ... 6 slides long !

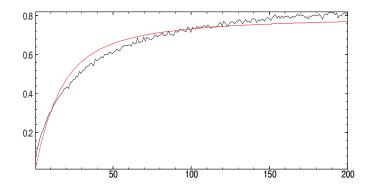
Mean Epps effect on simulated data

Mean Epps effect on 50 hours simulated data



Mean Epps effect on real data

• Bund 10Y / Bobl 5Y : 41 days, 9-11 AM - Last Traded



with $\alpha_{Bobl} = \alpha_{Bund}$.

Accounting for market impact of a labeled agent

- Agent at time $t : dA^+(t)$ buy orders $dA^-(t)$ sell orders $dA(t) = \begin{pmatrix} dA^+(t) \\ dA^-(t) \end{pmatrix}$
- \bullet Impacts will be modeled by additive terms on λ^{N^+} , λ^{N^-}
- Single buy order at time t₀: dA⁺(t) = δ(t − t₀), dA⁻ = 0
 Impact on upward jumps: λ_t^{N⁺} → λ_t^{N⁺} + φ^{l,s}(t − t₀) → "Instantaneous" impact of the trade itself → delayed upward moves (e.g., cancel orders)
 Impact on donward jumps: λ_t^{N⁻} → λ_t^{N⁻} + φ^{l,c}(t − t₀) → delayed downward moves
- Meta order starting at time t₀

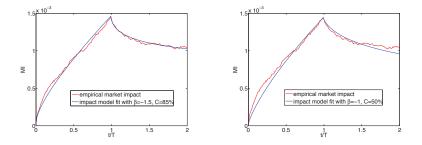
$$\lambda_t^N = \mu . u + \Phi^N \star dN_t + \Phi^I \star dA(t),$$

where $\Phi^I(t) = \begin{pmatrix} \varphi^{I,s} & \varphi^{I,c} \\ \varphi^{I,c} & \varphi^{I,s} \end{pmatrix}$ is the impact kernel

Fitting Market impact curves on CAC40 meta-orders

E.B, M.Hoffmann, A.Iuga, M.Lasnier, C.A.Lehalle (working paper)

$$\mathit{MI}(t) = \mathit{E}(\mathit{X}_t - \mathit{X}_{t_0=0})$$
 with $\mathit{X}_t = \mathit{N}_t^+ - \mathit{N}_t^-$



- Concave impact while trading
 - ightarrow depend on T, the smaller impact the larger T
- Relaxation after trading
- Is able to reproduce both permanent/non permanent impact

What if all available market orders are anonymous?

Markets generally do not provide labeled data

• Flow of anonymous marker orders $T_t = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$

 T^+ (resp. T^-) : trade arrivals at the best ask (resp.bid)

- No more access to market impact profile !
- Only access to the Response function : R(t t₀) : Expectation of the price at time t knowing there was a buying market order at time t₀, i.e.,

$$R(t - t_0) = E(N_t^+ - N_t^- | dT_{t_0}^+ = \delta(t - t_0))$$

Towards a model for market impact of anonymous market orders?

Towards a model for market impact of anonymous market orders

Markets generally do not provide labeled data

Flow of anonymous marker orders T_t = (T_t⁺) T⁺ (resp. T⁻) : trade arrivals at the best ask (resp.bid)
The Price model with a label agent

$$\lambda^{N}{}_{t} = \mu . u + \Phi^{N} \star dN_{t} + \Phi^{\prime} \star \mathbf{dA}(\mathbf{t})$$

• The Price model with the anonymous market order flow

$$\lambda^{N}{}_{t} = \Phi^{N} \star dN_{t} + \Phi^{\prime} \star \mathbf{dT}(\mathbf{t})$$

Towards a model for market impact of anonymous market orders

Markets generally do not provide labeled data

Flow of anonymous marker orders T_t = (T_t⁺) T⁺ (resp. T⁻) : trade arrivals at the best ask (resp.bid)
The Price model with a label agent

$$\lambda^{N}{}_{t} = \mu.u + \Phi^{N} \star dN_{t} + \Phi^{\prime} \star \mathbf{dA}(\mathbf{t})$$

The Price model with the anonymous market order flow

$$\lambda^{N}_{t} = \Phi^{N} \star dN_{t} + \Phi^{\prime} \star d\mathbf{T}(\mathbf{t})$$

Towards a model for market impact of anonymous trades

E.B, J.F.Muzy (QF 2014)

- The anonymous market orders flow $T_t = \begin{pmatrix} T_t^+ \\ T_t^- \end{pmatrix}$ T^+ (resp. T^-) : trade arrivals at the best ask (resp.bid)
- The Price model $X_t = N_t^+ N_t^-$

 N^+ (resp. N^-) : upward (resp. downward) jumps

$$\lambda^{N}_{t} = \Phi^{N} \star dN_{t} + \Phi^{\prime} \star d\mathbf{T}(\mathbf{t})$$

 $\longrightarrow \Phi^{I}$: "Instantaneous" impact + influence on price moves $\longrightarrow \Phi^{N}$: Influence of past price moves on future price moves

The model for anonymous trades

E.B, J.F.Muzy (QF 2014)

The anonymous trade arrivals model \longrightarrow A 2d Hawkes process

$$T_t = \left(\begin{array}{c} T_t^+ \\ T_t^- \end{array}\right)$$

 T^+ (resp. T^-) : trade arrivals at the best ask (resp.bid)

$$\lambda_t^{\mathsf{T}} = \mu.u + \Phi^{\mathsf{T}} \star dT_t + \Phi^{\mathsf{R}} \star dN_t$$

where

$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \Phi^{T} = \begin{pmatrix} \varphi^{T,s} & \varphi^{T,c} \\ \varphi^{T,c} & \varphi^{T,s} \end{pmatrix} \text{ and } \Phi^{R} = \begin{pmatrix} \varphi^{R,s} & \varphi^{R,c} \\ \varphi^{R,c} & \varphi^{R,s} \end{pmatrix}$$

 $\begin{array}{l} \longrightarrow \mu : \mbox{Anonymous trade intensity} \\ \longrightarrow \Phi^{T} : \mbox{Auto-correlation of trades} \\ \longrightarrow \Phi^{R} : \mbox{Retro-influence of price moves on trades} \end{array}$

E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021 Part III- Tick by tick financial time series

The overall model is a 4 dimensional Hawkes process P

E.B, J.F.Muzy (QF 2014)

$$P_t = \begin{pmatrix} T_t \\ N_t \end{pmatrix}$$
 whose intensity $\lambda_t = \begin{pmatrix} \lambda^T_t \\ \lambda^N_t \end{pmatrix}$ is given by
 $\lambda_t = M + \Phi \star dP_t,$

where

$$M = \begin{pmatrix} \mu \cdot u \\ 0 \end{pmatrix}, \quad \Phi(t) = \begin{pmatrix} \Phi^{T}(t) & \Phi^{R}(t) \\ \Phi^{I}(t) & \Phi^{N}(t) \end{pmatrix}$$

- μ : Anonymous trade intensity
- $\Phi^{T}(t)$: Auto-correlation of anonymous trades
- $\Phi^{I}(t)$: "Instantaneous" impact + influence on price moves
- $\Phi^N(t)$: Influence of past price moves on future price moves
- $\Phi^{R}(t)$: Retro-influence of price moves on anonymous trades

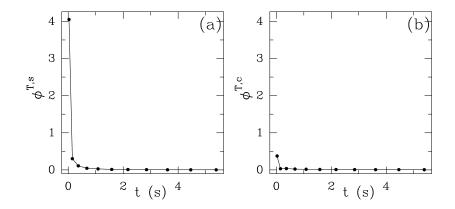
$$\lambda_t = M(t) + \Phi \star dP_t,$$

where

$$M(t) = \begin{pmatrix} \mu \cdot u \\ 0 \end{pmatrix}, \quad \Phi(t) = \begin{pmatrix} \Phi^{T}(t) & \Phi^{R}(t) \\ \Phi^{I}(t) & \Phi^{N}(t) \end{pmatrix}$$

• Non parametric estimation of μ and all the kernels : Φ^T , Φ^R , Φ^N , Φ^I , from anonymous market data.

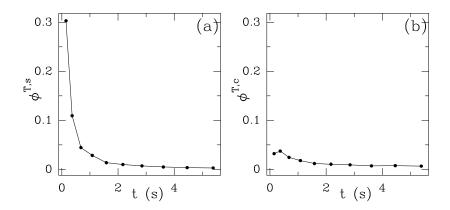
Non parametric estimation of Φ^T for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



Trade auto-correlation

Non parametric estimation of Φ^{T} for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

Zooming ...

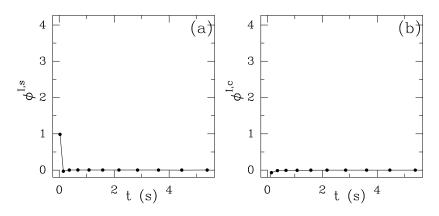


Trade auto-correlation : \longrightarrow Mainly "positive" correlation : Splitting and Herding

E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021

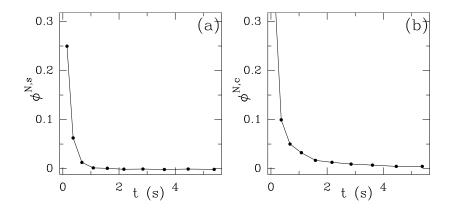
Part III- Tick by tick financial time series

Non parametric estimation of Φ^{I} for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



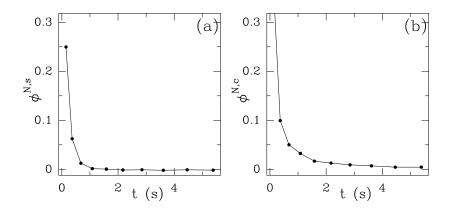
Trade "instantaneous" impact + influence on delayed price moves \rightarrow Mainly instantaneous impact : $\phi^{l,s}(t) \simeq C\delta(t)$ and $\phi^{l,c} \simeq 0$.

Non parametric estimation of Φ^N for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



Influence of past price moves on future price moves

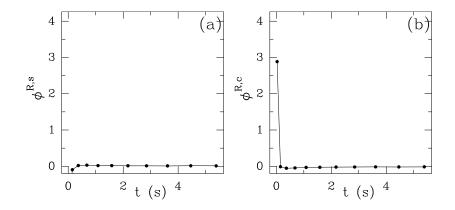
Non parametric estimation of Φ^N for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



Influence of past price moves on future price moves $\longrightarrow \mathsf{Mostly}$ mean reverting

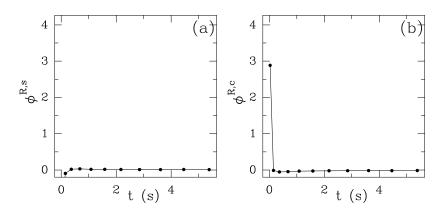
E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021 Part III- Tick by tick financial time series

Non parametric estimation of Φ^R for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



Retro-influence of price moves on anonymous trades :

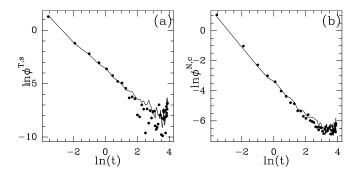
Non parametric estimation of Φ^R for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)



Retro-influence of price moves on anonymous trades : $\rightarrow \phi^{R,cross}$ large and $\phi^{R,self} \simeq 0$! Price goes up \implies more sell market orders

Non parametric estimation for Eurostoxx Futures 10h-12h, 2009-2012 (800 days)

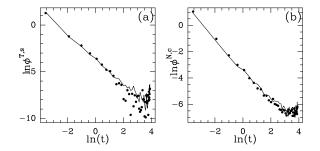
- Most kernels are power-law (when non 0) : $\frac{\alpha}{(\delta+x)^{\beta}}$
- With $\beta \simeq 1$: close to unstablity limit ! (K.Al Dayri, E.B, J.F.Muzy, EPJB 2012).



• Except $\varphi^{I,s} \simeq C\delta$ (C << 1) and $\varphi^{R,c}$

Non parametric estimation for Eurostoxx and Bund Futures 10h-12h, 2009-2012 (800 days)

• Kernels can be amazingly stable when asset changes

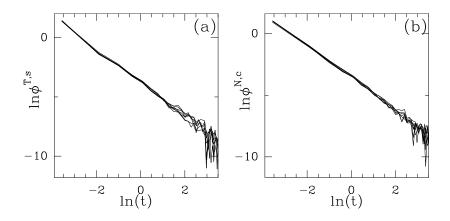


plain line : Eurostoxx Futures, • : Bund

• No adjustment (no prefactors)!

Intraday seasonalities for Eurostoxx Futures 2009-2012

Log-Log plots of $\varphi^{T,s}$ and $\varphi^{N,c}$ for different intraday slices : 9h-11h, 10h-12h, 11h-13h, 12h-14h, 13h-15h, 14h-16h, 15h-17h



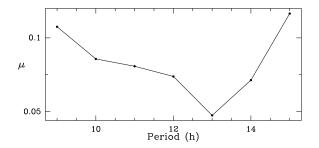
The kernel estimations do not depend on the intraday period

Intraday seasonalities for Eurostoxx Futures 2009-2012

The intraday seasonality is only carried by μ (U-shape) Model with intraday seasonality

$$\lambda_t = M(t) + \Phi \star dP_t,$$

where
$$M(t) = \begin{pmatrix} \mu_{\text{seasonal}(t)} \cdot u \\ 0 \end{pmatrix}$$
, $\Phi(t) = \begin{pmatrix} \Phi^T(t) & \Phi^R(t) \\ \Phi'(t) & \Phi^N(t) \end{pmatrix}$



Closed analytical formula for many quantities of interest

- Response function
- Diffusive variance of the price
- Auto-correlation function of
 - the trade signs (in practice heavy correlation)
 - the increments of the price (in practice very small correlations)
- Market impact
- ...

Market impact profile estimation from anonymous data

Analytical formula for the Market Impact of a meta-order

A particular case :

- An "impulsive" Impact kernel : $\varphi^{I,s}(t) = C\delta(t)$, $\varphi^{I,c}(t) = 0$
- A single buy order : $dA^+(t) = \delta(t), dA^-(t) = 0$
- \implies the Market impact is

$$MI(t) = E(X_t - X_0) = 1_{[0,+\infty]}(t) - \int_0^t \Delta \xi(u) du,$$

where the Laplace transform of $\Delta \xi(t)$ is given by

$$\widehat{\Delta \xi} = 1 - \frac{(1 - \Delta \widehat{\phi}^{T})}{(1 - \Delta \widehat{\phi}^{T})(1 - \Delta \widehat{\phi}^{N}) - \Delta \widehat{\phi}^{R}}$$

where $\Delta \varphi^{?} = \varphi^{?,s} - \varphi^{?,c}$ measures the "kernel's imbalance" E. Bacry, Ceremade Université Paris-Dauphine PSL, 2021 Part III- Tick by tick financial time series

Permanent versus non-permanent market impact

Analytical formula for the asymptotic market impact $MI(+\infty)$

In the case of a "cross-only" Retro-kernel : $\varphi^{R,s}(t) = 0$

 \implies The asymptotic market impact is

$$MI(+\infty) = \frac{1}{(1-\Delta||\varphi^{N}||_{1}) + ||\varphi^{R,c}||_{1}/(1-\Delta||\varphi^{T}||_{1})},$$

where

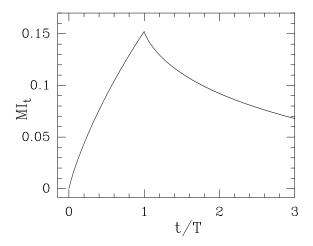
$$\begin{split} &\Delta ||\varphi^{\mathcal{T}}||_1 = ||\varphi^{\mathcal{T},s}||_1 - ||\varphi^{\mathcal{T},c}||_1 \ (\in] -1, 1[\text{ implied by stability}) \\ &\Delta ||\varphi^{\mathcal{N}}||_1 = ||\varphi^{\mathcal{N},s}||_1 - ||\varphi^{\mathcal{N},c}||_1 \ (\in] -1, 1[\text{ implied by stability}) \end{split}$$

 $MI(+\infty)$ decreases when mean reversion increases, i.e. : • when $\Delta ||\varphi^N||_1$ goes to -1 • when $||\varphi^{R,c}||_1$ increases • when $\Delta ||\varphi^T||_1$ goes to 1 E. Barry, Gremade Université Paris-Dauphine PSIL 2021 Part III- Tick by tick financial time series

Market impact profile estimation from anonymous data on Eurostoxx Futures

- Non parametric estimation of **all the kernels** : Φ^T , Φ^R , Φ^N , Φ^I
- Setting $\varphi^{T,c} = 0$, $\varphi^{I,c} = 0$ and $\varphi^{R,s} = 0$
- \bullet Fitting exponential kernels on $\varphi^{I,s}$ and $\varphi^{R,c}$
- Fitting Power-law kernels on $\varphi^{T,s}, \, \varphi^{N,c}$ and $\varphi^{N,s}$
- Computing the market impact profile from analytical formula

Market impact profile estimation from anonymous data on Eurostoxx Futures



The process $P_t = \begin{pmatrix} T_t^- \\ T_t^+ \\ N_t^- \\ N_t^+ \end{pmatrix}$ diffuses at large scales

(from E.B., S.Delattre, M.Hoffmann, J.F.Muzy, preprint 2011)

$$\frac{1}{\sqrt{h}}(P_{ht} - E(P_{ht})) \rightarrow^{law} (\mathbb{I} - \widehat{\Phi}_0)^{-1} \Sigma^{1/2} W_t$$

where W_t is a n-dimensional Gaussian process (with stationary increments).

Consequently

- The Trade process $U_t = T_t^+ T_t^-$ diffuses at large scales
- The Price process $X_t = T_t^+ T_t^-$ diffuses at large scales

Trade sign long-range correlations

- U_t diffuses at large scales
- Is it compatible with empirical findings about long range correlations of U_t ?

 \Rightarrow Strictly speaking : **NO** !

However, as long as

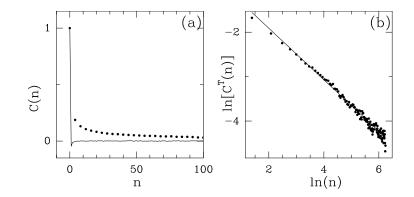
•
$$\Delta \hat{\Phi}^{\tilde{T}}_0 \simeq 1$$
 and

•
$${arphi}^{T,s}{}_t \sim (c+t)^{-1+
u}$$
,

 \Longrightarrow there is a finite range of scales (in practice \simeq 5 decades !) on which

$$C^{T}(au) = \mathit{Cov}(U_t, U_{t+ au}) \sim au^{2
u-1}$$

Trade sign long-range correlations



• : $C^{T}(\tau) = Cov(U_t, U_{t+\tau})$

Price "long-memory puzzle" (Bouchaud etal. 2004)?

- U_t is long-range correlated on a large range of scales
- How come the price X_t = N_t⁺ N_t⁻ is not long-range correlated on a large range of scales ?

As long as

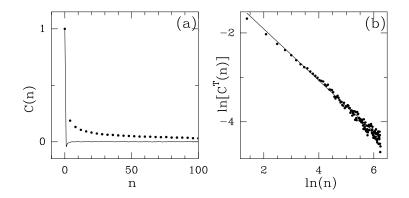
•
$$\Delta \hat{\Phi}^{\hat{N}}_0 < 0$$
 and

• $\Delta arphi^{{\it N},s}{}_t \sim (c'+t)^{-1+\nu'}$, $(\nu'<<1)$,

 \Longrightarrow there is a finite range of scales (in practice \simeq 5 decades !) on which

$$C^{N}(\tau) = Cov(X_t, X_{t+\tau}) << 1$$

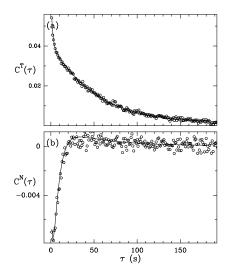
Price fast decorrelation



• (left and right plots) : $C^T(\tau) = Cov(U_t, U_{t+\tau})$ --- (left plot) : $C^N(\tau) = Cov(X_t, X_{t+\tau})$

Trade sign and price correlations

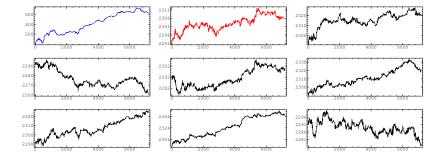
(after removing the first point of correlation functions)



A microstructure and impact model

- Reproduce microstructure and market impact stylized facts (Bund, SP Fut., Euro/\$ Fut., Eurostoxx Fut.,...)
- Kernel components can be easily estimated non parametrically
- Most kernels are heavy-tailed (as found in K.Al Dayri, E.B, J.F.Muzy, EPJB, 2012)
- Kernel components can be easily interpreted in terms of various dynamics
- Analytical formula for many quantities
- Market impact profile estimation from anonymous data
- Gives insights about the value of the permanent market impact
- Can be easily generalized
 - incorporating trade volumes
 - account for limit/cancel orders
 - Influence of labeled agents on anonymous agents
 - Multiple agents model
 - News model

Replay of 2 hours of Eurostoxx mid-price from real trades



 $T_t^+ - T_t^-$: True cum. Trades on 3/08/2008 - [10am-12am] $N_t^+ - N_t^-$: True mid-price on 3/08/2008 between 10am and 12am Simulation of the mid-price process *N* given the real trades

An 8-dimensionnal model for Level I orderbook events

E.B. T.Jaisson and J.F. Muzy (2014)

• Database :

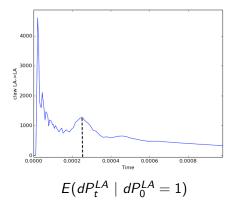
- Dax Futures (small tick size)
- Bund Futures (large tick size)
- 1 year data : 06/2013-06/2014
- time precision = $1\mu s$

• *P_t* is an 8-dimensional counting process :

- PA (resp. PB) : upward (resp. downward) mid-price jumps
- TA (resp. TB) : market orders at the best ask (resp. bid)
- LA (resp. LB) : limit orders at the best ask (resp. bid)
- CA (resp. CB) : cancel orders at the best ask (resp. bid)

# events/day	PA/PB	TA/TB	LA/LB	CA/CB
Dax	72.000	20.000	152.000	184.000
Bund	14.000	28.000	240.000	212.000

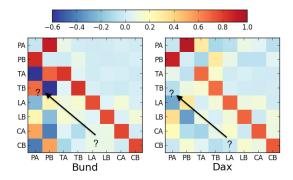
Estimation is based on conditionnal expectation

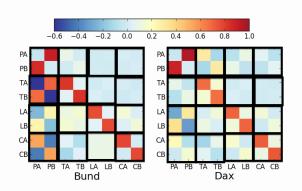


MOST of the conditionnal laws display a peak around $t \simeq 0.25 ms$ \implies Average Latency Ratio of exogeneous events over all events $R^i = \frac{\mu^i}{\Lambda^i}$

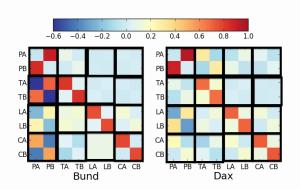
	PA	PB	TA	ΤB	LA	LB	CA	CB
Bund	4.4%	4.4%	4.5%	4.5%	1.4%	1.4%	1.6%	1.8%
Dax	2.7%	2.7%	4.3%	4.5%	1.1%	1.2%	0.7%	0.4%

Color coding of the norms $||\Phi^{? \rightarrow ?}||_1$



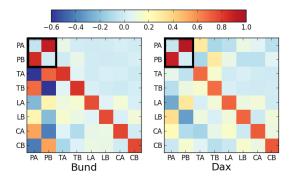


⇒ Symmetry upward/downward and ask/bid



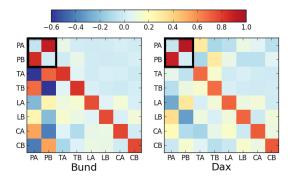
\implies Symmetry upward/downward and ask/bid

Price Kernel Norms



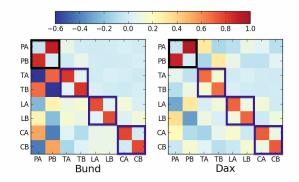
"Anti-diagonal" shape in the price kernels
 ⇒ mean reversion of the price

Price Kernel Norms



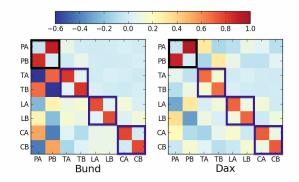
- "Anti-diagonal" shape in the price kernels
 - \Rightarrow mean reversion of the price

Order flow Kernel Norms



- "Anti-diagonal" shape in the price kernels
 ⇒ mean reversion of the price
- "Diagonal" shape in the limit/cancel/trade kernels
 splitting/herding

Order flow Kernel Norms

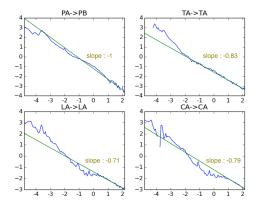


- "Anti-diagonal" shape in the price kernels
 ⇒ mean reversion of the price
- "Diagonal" shape in the limit/cancel/trade kernels
 ⇒ splitting/herding

Shape of some kernels

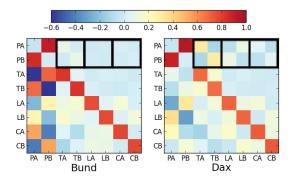
Power law kernels responsible for

- price mean reversion
- order splitting, herding



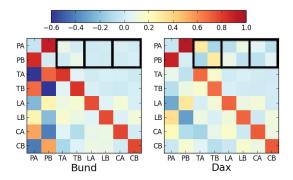
Log-log plots of some kernel estimations on 7 decades

Impact of the order flows on the price



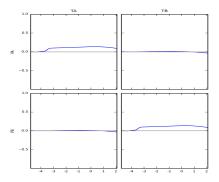
- Trades : main source of impact (diagonal)
- Limits : contrariant
- Cancels : diagonal

Impact of the order flows on the price



- Trades : main source of impact (diagonal)
- Limits : contrariant
- Cancels : diagonal

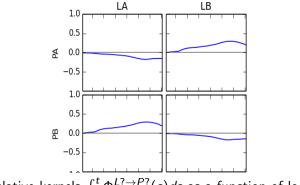
Price impact of trade flow



Cumulative kernels $\int_0^t \Phi^{T? \to P?}(s) ds$ as a function of $\log(t)$

- Impact kernels $\Phi^{TA \rightarrow PA}$ and $\Phi^{TB \rightarrow PB}$ are very localized
- Localization around "latency value" $\simeq 0.25 ms$

Price impact of limit/cancel flow

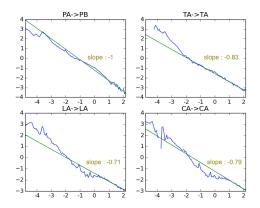


Cumulative kernels $\int_0^t \Phi^{L? \to P?}(s) ds$ as a function of $\log(t)$

• The kernels
$$\Phi^{L? \to P?}$$
 and $\Phi^{C? \to P?} << \Phi^{T? \to P?}$

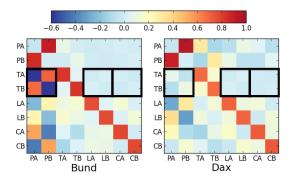
• The kernels $\Phi^{L? \to P?}$ and $\Phi^{C? \to P?}$ are **not** localized.

Market Price "efficiency"



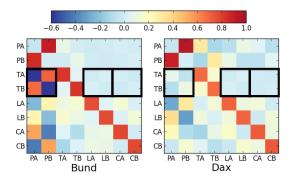
 \Rightarrow Market Price efficiency comes from a "rough" equilibrium between the 4 main power law kernels

Impact on the trades



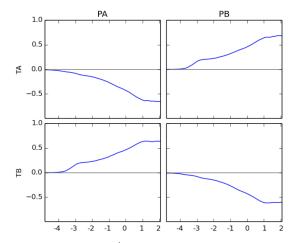
- Impact of the Price : Bund (contrariant), Dax (diagonal) large tick size : a change in price carries much more information
- Impact of the Limit is very small (actually trades are *leading*)
 Impact of the Cancel is very small

Impact on the trades



- Impact of the Price : Bund (contrariant), Dax (diagonal) large tick size : a change in price carries much more information
- Impact of the Limit is very small (actually trades are *leading*)
- Impact of the Cancel is very small

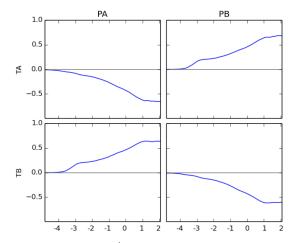
Impact of the price on trade flow of the Bund



Cumulative kernels $\int_0^t \Phi(s) ds$ as a function of $\log(t)$

• Price goes up \Rightarrow agents buy less and sell more

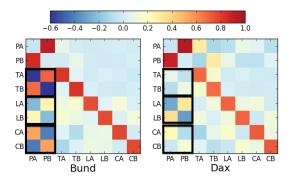
Impact of the price on trade flow of the Bund



Cumulative kernels $\int_0^t \Phi(s) ds$ as a function of $\log(t)$

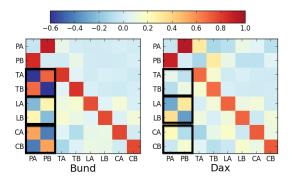
• Price goes up \Rightarrow agents buy less and sell more

Impact of the price on order flows



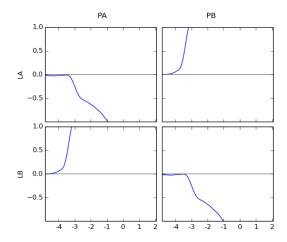
- Inpact on Trade : Bund (contrariant), Dax (diagonal)
- Impact on Limit : contrariant
- Impact on Cancel : diagonal

Impact of the price on order flows



- Inpact on Trade : Bund (contrariant), Dax (diagonal)
- Impact on Limit : contrariant
- Impact on Cancel : diagonal

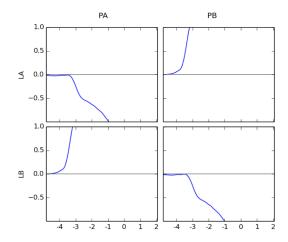
Impact of the price on limit flow of the Bund



Cumulative kernels $\int_0^t \Phi(s) ds$ as a function of $\log(t)$

• Price goes up \Rightarrow Market maker reaction

Impact of the price on limit flow of the Bund



Cumulative kernels $\int_0^t \Phi(s) ds$ as a function of $\log(t)$

● Price goes up ⇒ Market maker reaction

- Kernel components can be easily estimated non parametrically
- Stable even for slightly negative valued kernels
- Kernel components can be easily interpreted in terms of various dynamics
 - Latency appears clearly in some kernels
 - Mean-reversion of price
 - Strong localized price impact of trades
 - Very weak non-localized price impact of limits and cancels
 - Contrariant impact of price changes on trade flow
 - Market maker reactions to price change
 - ...